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Abstract. In realistic spinglasses, such as CuMn, AuFe and EuSrS, magnetic atoms are located at random
positions. Their couplings are determined by their relative positions. For such systems a field theory is
formulated. In certain limits it reduces to the Hopfield model, the Sherrington-Kirkpatrick model, and the
Viana-Bray model. The model has a percolation transition, while for RKKY couplings the “concentration
scaling” Tg ∼ c occurs. Within the Gaussian approximation the Ginzburg-Landau expansion is considered
in the clusterglass phase, that is to say, for not too small concentrations. Near special points, the prefactor
of the cubic term, or the one of the replica-symmetry-breaking quartic term, may go through zero. Around
such points new spin glass phases are found.

PACS. 75.10.Nr Spin-glass and other random models – 75.30.Fv Spin-density waves –
75.50.Lk Spin glasses and other random magnets

1 Introduction

Prototypes of systems exhibiting a spin glass phase are the
impure metals Cu1−cMnc and Au1−cFec, and the insula-
tor Eu1−cSrcS [1,2]. Their common property is frustration
of magnetic bonds, which arises from the combination of
site disorder and the presence of both ferromagnetic and
antiferromagnetic exchange constants. In metals the ex-
change is the long range, oscillating RKKY interaction; in
an insulating SG the interaction is often antiferromagnetic
for nearest neighbors and ferromagnetic for next nearest
neighbors, while vanishing for more distant pairs.

Edwards and Anderson proposed to describe the
spinglass phase by spins with fully random couplings [3].
The mean field limit of this model for Ising spins is
the Sherrington-Kirkpatrick (SK) model [4]. The diluted
version, where only a fraction of the random bonds is
present, is called the Viana-Bray model [5].

The mean field structure of the SG-phase was derived
by Parisi et al. There are infinitely many thermodynamic
states, and the order parameter is a function q(x) or P (q),
which describes the probabilities of overlaps between pairs
of states [6].

The calculation of corrections to mean field theory has
been very laborious. For a recent review, see [7].

The question what remains of mean field theory in low
dimensions is still fiercely debated. Nevertheless, the best
numerical simulations done so far support the existence
of a non-trivial overlap distribution function P (q) in 4
and 3 dimensions. In particular, the quantity P (q = 0)
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apparently does not vanish in the spin glass phase, which is
compatible with the mean-field predictions. This suggests
that mean field theory is the best starting point for a
description of the low-dimensional spin-glasses [8].

Mean field notions such as branching ratios and ultra-
metric organization of states have turned out useful in the
interpretation of experiments. Indeed, noise experiments
on mesoscopic metallic spin glasses have supported the
mean field picture [9].

We are thus at the stage where theoretical results are
mainly gained from random bond systems, while experi-
ments are mostly performed on random site systems. The
understanding of the spin glass phase in random site sys-
tems has long been a challenge for the field. Some time ago
one of the authors formulated a field theoretic approach
for this purpose [10]. In certain limit close analogies were
established with known spin glass phases in well-known
models, such as the Sherrington-Kirkpatrick model, the
Hopfield model, and the Viana-Bray model.

The first purpose of the present work is to provide
the details of that work. This will be done in Section 2.
In Section 3 one of the results will be rederived via the
Gaussian variational approach. In Section 4 we consider a
related model with combined bond- and site disorder. In
Section 5 we extend the approach of Section 2 to vector
spins. In Section 6 we analyze the equations of Section 2
for low T and find that replica symmetry must always be
broken.

More recently we have considered the Ginzburg-
Landau theory of site-disordered spin glasses [11]. It was
argued that the prefactor of the cubic or most relevant
quartic term may vanish at special points and then change
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sign. Around such points new types of spin glass phases
occur. In Section 7 we shall provide the details of that
approach. In Section 8 we close with a summary.

2 Thermodynamics as a set
of coupled order parameters

We discuss a field theory for a random magnet with site-
disorder. First we consider a system of Ising spins with
Hamiltonian

H(s) = −
1

2

∑
r r′

J(r − r′)srsr′crcr′ −H
∑
r

srcr (1)

with sums over all N sites of a regular lattice in d
dimensions, with periodic boundary conditions. The cr
are random occupation numbers; cr = 1 indicates that
at site r a spin is present, whereas cr = 0 when this site
is empty. We shall consider uncorrelated disorder with a
fraction c and a total number cN of spins present, with
0 < c < 1. Jrr′ = J(r − r′) is a translationally invariant
pair coupling. A well-known example is the RKKY cou-
pling of metallic spin glasses, J(r) ∼ cos(2kF r)/r

3, that
was recently simulated numerically by Matsubara, Iguchi
et al. [12].

However, we can consider more general situations. In
a metallic SG there may be additional short-distance
(anti-) ferromagnetic clustering [1]. For many insulating
spin glasses J(r) takes the value Jnn > 0 for nearest neigh-
bors and Jnnn < 0 for next-nearest neighbors (nnn), while
it is effectively zero for more distant pairs.

Not described by this model are the site-random sys-
tems. In these system, the randomness of the spin-spin
interactions arises from having two species of magnetic
atoms. The sign of the interaction between two spins de-
pends on the atom-species on which these spins reside.
An experimental realization of this kind of spin-glass is
Rb2Cu1−xCoxFn. Although site-random materials were
thought to be close to the random-bond ideal [1], their
spin-spin interactions are in fact spatially correlated, as
is the case for the random-site systems considered here.
Numerical work shows that these correlations are relevant
and that random bond models cannot capture the behav-
ior of the site-random systems [13].

In the following we shall focus on the situation where
for large c ferromagnetic (FM) ordering occurs. For
describing two-sublattice antiferromagnetic ordering one
first has to make the replacement sr → −sr on one of the
sublattices. This will redefine the couplings J and intro-
duce the staggered external field ±H. Since our spins are
classical, this leads to a problem similar to the ferromag-
netic one.

In order to study the thermodynamics of this system
at temperature T ≡ 1/β we express the Boltzmann factor
as a multiple integral

exp{−βH(s)} =

∫
Dφ exp{−βH(φ, s)} (2)

where

Dφ = det(βJ/2π + i0)1/2
∏
r

∫
dφr . (3)

The integrations run from −
√
i∞ to

√
i∞. To assure con-

vergence of the Gaussian integrals, a regulator i0 has been
added to J ; it will from now on not be written explicitly.
The partition sum can thus be represented as trace over
both discrete (sr) and continuous (φr) degrees of freedom

Z =

∫
Dφ

∑
{s}

exp{−βH(φ, s)}, (4)

with Hamiltonian

βH(φ, s) =
T

2

∑
rr′

φrJ
−1
rr′φr′ −

∑
r

cr{φr + h}sr, (5)

where h = βH.
The quenched averaged free energy follows from logZ.

The replica method is employed for studying this quantity.
One thus calculates the quenched averages Zn for n =
1, 2, 3, . . . The results have to be continued to the limit
n→ 0. This procedure introduces replicated field and spin
variables φαr , sαr = sαr , for 1 ≤ α ≤ n. The average over
the occupation variables cr can now be performed. Since
spin sums are decoupled at each site, we may now write
sαr as sα, which leads to

Zn =

∫
Dφ exp{−βHn(φ)}, (6)

with replicated Hamiltonian

βHn(φ) =
T

2

n∑
α=1

∑
rr′

φαr J
−1
rr′φ

α
r′ − cNΦn (7)

where

Φn=n log 2 +
1

cN

∑
r

log

(
1− c+ c trs exp

n∑
α=1

(φαr + h)sα

)
(8)

and where trs stands for the normalized sum over
sα = ±1, (α = 1, . . . , n),

trs =
1

2n

∑
{sα=±1}

=
1

2n

∑
s1=±1

· · ·
∑
sn=±1

. (9)

In order to proceed one has to make an assumption for the
order parameter(s). In a mean field approach the magneti-
zation per spin, M , will be proportional to the mean field
value of mα = [φα], where

[A] ≡ N−1
∑
r

Ar (10)

denotes the spatial average of an observable Ar. The main
step in the present work is to introduce, in the spirit
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of Edwards-Anderson, also space-independent composite
order parameters such as [φαφβ ]c. This involves the second
spatial cumulant

pαβ = [φαφβ ]c ≡ [φαφβ ]− [φα] [φβ ] . (11)

mα and pαβ are the first terms in a cumulant expan-

sion in powers of φα. In Fourier space mα equals φ̂α(0)

and pαβ =
∑
k 6=0 φ̂α(k)φ̂β(−k). Ferromagnetic ordering

implies a macroscopic occupation of the k = 0 mode,
φ̂α(0) = O(1), while a spin density wave has a macroscopic
occupation of some k 6= 0. Spin glass ordering, however,
occurs when pαβ > 0 for α 6= β and is caused by a small
occupation of all wavenumbers k 6= 0.

In our approach the order parameters explicitly take
into account the macroscopic contributions of combina-
tions of Fourier modes (e.g. Mα = φ̂α(k = 0)). The result-

ing Fourier sums (e.g.
∑
k 6=0 φ̂α(k)φ̂β(k)) “cannot bite”, as

their “teeth” have been removed. Likewise, at third order

[φαφβφγ ]c =
∑
k1 6=0;
k2 6=0;
k1 6=−k2

φ̂α(k1)φ̂β(k2)φ̂γ(−k1 − k2) (12)

only incorporates small contributions from all k1 and k1,
and no macroscopic (Mα or qαβ) contribution.

For a full description of the problem an infinity of
spatial cumulants is needed. We shall, however, first see
in how far low order approximations already lead to
meaningful results.

2.1 Second order cumulant expansion
or Gaussian approximation

As in the derivation of the Fokker-Planck equation, one
may hope that the Gaussian approximation already leads
to meaningful insights, and does not yet produce unphys-
ical effects such as negative entropies.

After expanding the logarithm of equation (8) in
powers of c/(1 − c), we introduce in the `’th term the
concentration factor

γ` =
(−c)`−1

`(1− c)`
(` = 1, 2, 3, · · · ) (13)

and we have to replicate the spins ` times. This leads to
the “`-spin”

σα =
∑̀
j=1

s(j)
α . (14)

The normalized trace over its values will be denoted by

tr
(`)
s . When truncating the cumulant expansion beyond

second order, the spatial average leads to[
exp

∑
α

φασα

]
≡ exp[exp

∑
α

φασα]c

= exp

∑
α

mασα +
1

2

∑
αβ

pαβσασβ

 .

(15)

The relation between pαβ and the φ’s is imposed by
inserting for each set α ≤ β

1 =

∫
dpαβδ(pαβ − [φαφβ ]c)

=

∫ ∞
−∞

dpαβ

∫ i∞

−i∞

Nc

4πi
dqαβe

1
2Ncqαβ([φαφβ ]c−pαβ). (16)

A Gaussian form in the φ’s is then obtained, so they can
be integrated out. This yields for the replicated free energy
per spin βFn = (−1/Nc) lnZn:

βFn =
T

2cĴ(0)

∑
α

m2
α +

1

2c

∑
α

∫
ddk

(2π)d

×
{

ln(1 − cβĴ(k)q)
}
αα

+
1

2

∑
αβ

qαβpαβ − Φn,

(17)

with

Φn = n log 2 +
∞∑
`=1

γ`

(
tr(`)
s expX(`) − 1

)
. (18)

Further,

X(`) =
∑
α

(mα + h)σα +
1

2

∑
αβ

pαβσασβ . (19)

The k-integral has arisen from (1/N)
∑
k 6=0, where the

exclusion of the k = 0 term is due to the definition of
the spatial cumulant. In the thermodynamic limit this ex-
clusion becomes irrelevant. The ensemble averaged free
energy per spin now follows as F = limn→0 Fn/n, with
Fn calculated at its saddlepoint. For c ≥ 1/2 the `-sum in
equation (18) can defined by a Padé resummation.

The magnetization per spin in the replicated system is

Mα ≡
T

cĴ(0)
mα = 〈σα〉 (20)

≡
∞∑
`=1

γ` tr(`)
s σα expX(`). (21)

The physical interpretation of q follows from its mean
field equation. This turns out to be very similar to the
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one introduced by Edwards-Anderson and Sherrington-
Kirkpatrick

qαβ = 〈σασβ〉 ≡
∞∑
`=1

γ`tr
(`)
s σασβ expX(`)

=
∞∑
`=1

γ`
tr

(`)
s σασβ expX(`)

tr
(`)
s expX(`)

· (22)

The last equality holds since the denominator equals
unity in the replica limit n → 0. For c → 0 only the
` = 1 term 〈sαsβ〉 survives and one exactly recovers the
two state overlap introduced by Edwards-Anderson and
Sherrington-Kirkpatrick. Variation with respect to qαβ
yields

pαβ =

∫
ddk

(2π)d

(
βĴ(k)

1− cβĴ(k)q

)
αβ

. (23)

This form exhibits clustering effects. Indeed, decomposing
qαβ = qdδαβ + q̃αβ with qd = qαα and q̃αα = 0, we may
also write for α 6= β

pαβ =

∫
ddk

(2π)d
βĴeff (k)

(
1

1− cβĴeff (k)q

)
αβ

=

∫
ddk

(2π)d
cβ2Ĵ2

eff (k)

(
q̃

1− cβĴeff (k)q

)
αβ

(α 6= β),

(24)

with the effective coupling

Ĵeff (k) =
Ĵ(k)

1− cβĴ(k)qd
· (25)

Expansion in powers of c indeed shows that it is a multi-
spin effect. Maxima of Ĵ are more pronounced in Ĵeff . This
describes the formation of finite clusters that are precur-
sors of the would-be spin density wave or (anti-) ferromag-
netic phase transition. In metallic spin glasses incomplete
spin density waves have indeed been observed by neutron
scattering [14]. It is well-known that both in metallic and
in insulating spin glasses there appear ferromagnetic clus-
ters near the ferromagnetic transition line; these clusters
(sometimes called “fat spins”) act as a quite rigid effec-
tive spins, that may contain up to 2000 magnetic atoms,
making quite visible moves. They are responsible for the
dynamics in the cluster glass phase [1]. We shall return to
this point in Section 7.

(At low temperature this expression for Jeff becomes
singular, though Eq. (23) is well-behaved. It is then more

appropriate to interpret Ĵ/(1− cβĴ(qd − qEA)) as the ef-
fective coupling, where qEA = max qα6=β is the Edwards-
Anderson order parameter).

2.2 Replica symmetry

To obtain an idea of the content of previous expressions,
we consider them in the replica-symmetric sector. The free

energy then reads

βF =
T

2cĴ(0)
m2 +

1

2c

∫
ddk

(2π)d

{
ln(1− cβĴ(k)(qd − q))

−
cβĴ(k)

1− cβĴ(k)(qd − q)

}
+

1

2
(pdqd − pq)−

∑
`

γ`

∫
g(x)dx

× ln

∫
g(y)dy2` cosh`(h+m+ x

√
p+ y

√
pd − p),

(26)

where

g(x) =
e−x

2/2

√
2π

(27)

is the Gaussian weight. The saddle point equations read

p =

∫
ddk

(2π)d
cβ2Ĵ2(k)

(1− cβĴ(k)(qd − q))2
,

pd = p+

∫
ddk

(2π)d
βĴ(k)

1− cβĴ(k)(qd − q)
,

q =
∑
`

γ`

∫
g(x)dx`2

(∫
g(y)dy cosh` ψ tanhψ∫

g(y)dy cosh` ψ

)2

,

qd =
∑
`

γ`

∫
g(x)dx

∫
g(y)dy cosh` ψ(`+`(`−1) tanh2 ψ)∫

g(y)dy cosh` ψ
,

(28)

where

ψ = h+m+ x
√
π + y

√
pd − p. (29)

These expressions will be used later on for small T , where
the cosh’s essentially become exponentials.

2.3 Relation to the Hopfield model
and the Sherrington-Kirkpatrick model

Despite of the simplifications made, the above expressions
are very rich. In some limits of long range couplings they
become exact.

Consider the situation where

J(k) = J0 k0 < |k| < k1 (30)

and zero outside this shell. This corresponds to a long
range spatial coupling

J(r) = J0

∫
k0<k<k1

ddk

(2π)d
sin(kr)

kr
· (31)

We denote the volume in phase space of this shell by

∆ =
∫ k1

k0
ddk/(2π)d. Consider the combined limit c → 0,
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k1 → k0, such that α = ∆/c remains fixed. Insert-
ing this in equation (17) we obtain for its spin glass
content (m = 0)

βFn =
α

2

∑
α

{log(1− cβJ0q)}αα +
1

2

∑
αβ

qαβpαβ − Φn.

(32)

In order to understand its meaning, let us consider the
case of replica symmetry. We get in the limit n→ 0

βF =
α

2

{
log(1− cβJ0(1− q))−

cβJ0q

1− cβJ0(1− q)

}
+

1

2
p(1− q)−

∫
dx
√

2π
e−x

2/2 log 2 coshx
√
p, (33)

with p and q obeying

p =
α(cβJ0)2q

(1− cβJ0(1− q))2
,

q =

∫ ∞
−∞

dx
√

2π
e−x

2/2 tanh2 x
√
p. (34)

After a rescaling (T → cJ0T̃ , p → αr/T̃ 2) these are
exactly the replica-symmetric free energy and its saddle
point equations for the spin glass phase in the Hopfield
model of a neural network with αN patterns [15]. More
generally, equation (32) is the free energy including replica
symmetry breaking. In the limit ∆→ 0, c→ 0, with fixed
∆/c = α one considers long range interactions between
widely separated spins, that effectively lead to random in-
teractions. It has been checked that loop-corrections do
not contribute in the limit. So (32) is an exact mean field
theory in this long range limit. Note that this may occur
in any fixed dimension (d = 1, 2, 3, . . . ).

The SK-model arises in the subsequent limit α → ∞.
To show this we must rescale T → T̃ cJ0

√
α. Then the

first relation in equation (34) becomes linear, and equa-
tions (32, 33) become linear + quadratic in qαβ , so that
pαβ and qαβ are linearly related. After elimination the
p’s, we recover expressions that in the limit n → 0 are
equivalent to the SK model. Hereto we also use that for
small n our expression −1+trs exp(pαβsαsβ/2) is propor-
tional to n and to this order equivalent to the SK result
log trs exp(pαβsαsβ/2).

The present random site problem was also studied, for
the case of Heisenberg spins, by Bray and Moore [16].
These authors do not introduce conjugated spin variables
but make a cumulant expansion of the Boltzmann factor
up to second order in the occupation factors ci. Since the
latter are zero or one, there is, however, no reason to stop
at second order. Therefore the results differ from ours and
are incorrect. For instance, according to reference [16] the
spin glass transition temperature scales as Tg ∼ c for small
c both for short range and RKKY couplings. We find, how-
ever, from equation (34) that Tg = JR ∼

√
c. Below we

shall derive Tg ∼ c for RKKY couplings via a more intri-
cate analysis, that takes into account more contributions.

2.4 Full cumulant expansion: the direct way

The above results do not exhibit a percolation transition.
Indeed, Tsg ∼

√
c does not vanish identically for small

enough concentrations. This is related to the fact that the
percolation transition of systems with z = ∞ occurs at
c = 0. Also for RKKY couplings the present prediction
overestimates Tg. Here one expects the well-established
“concentration scaling” Tsg ∼ c [1].

We therefore consider the full cumulant expansion of
equation (8). We introduce order parameters

pα1···αk = [φα1 · · ·φαk ]c (35)

as well as conjugated parameters qα1...αk . They are sym-
metric in their replica indices. The replicated free energy
may be written as

βFn = −Ψn(q) + pq − Φn(p), (36)

where

Ψn =
1

cN
log

∫
Dφ exp

(
−
T

2

∑
αrr′

φαr J
−1
rr′φ

α
r′

+cN
∞∑
k=1

1

k!

∑
α1···αk

qα1···αk [φα1 · · ·φαk ]c

)
, (37)

and

pq =
∞∑
k=1

1

k!

∑
α1···αk

pα1···αkqα1···αk . (38)

Φn is given by equation (18) with

X(`) =
∑
α

(pα + h)σα +
1

2!

∑
αβ

pαβσασβ

+
1

3!

∑
αβγ

pαβγσασβσγ + · · · (39)

The free energy is now determined by the infinite set of
coupled equations

pα1···αk = k!
∂

∂qα1···αk

Ψn(q)

qα1···αk = k!
∂

∂pα1···αk

Φn(p). (40)

2.5 A resummation

The above result is not very useful at low temperatures,
where the p’s become very large. However, it is possible
to resume the contributions. This can be performed in the
following elegant way. In the `’th term of Φn there are

spin variables s
(j)
α , (j = 1, . . . , `), which we now label as

sa with a = (α, j). Though they do not depend on j, we
also denote φα as φa. We start from the definition

[exp
∑
a

φαsa] = exp

(
[exp

∑
a

φαsa]c − 1

)
. (41)
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[
1 +

1

2
φ2
a +

1

8
φ2
aφ

2
b −

1

12
φ4
a

]
c

+

[
saφa(1−

1

3
φ2
a +

1

2
φ2
b)

]
c

+
1

2

[
sasbφaφb

(
1−

1

3
φ2
a −

1

3
φ2
b+

1

2
φ2
c

)
−φ2

a(1−
2

3
φ2
a +

1

2
φ2
c)

]
c

+
1

6

[
sasbscφaφbφc−3saφaφ

2
b+2saφ

3
a

]
c
+

1

24

[
sasbscsdφaφbφcφd − 6sasbφaφbφ

2
c + 3φ2

aφ
2
b + 8sasbφaφ

3
b − 6φ4

a

]
c

(46)

The obvious relation

[A+Aaφ
a
r +Aabφ

a
rφ

b
r +Aabcφ

a
rφ

b
rφ
c
r + · · · ]c =

A+Aa[φa]c +Aab[φ
aφb]c +Aabc[φ

aφbφc]c + · · · (42)

(summation convention employed) defines cumulants of
any expandable local function of φar . It is a generalization
of the definition

[eφasa ]c = 1 + sa[φa]c +
1

2
sasb[φaφb]c

+
1

6
sasbsc[φaφbφc]c +

1

24
sasbscsd[φaφbφcφd]c + · · ·

(43)

We employ the identity

exp(
∑
a

φasa) =
∏
a

coshφa(1 + sa tanhφa)

≡
∏
a

ca(1 + sata). (44)

Using the linear property of series of cumulants, equa-
tion (42), this product brings[

exp
∑
a

φasa

]
c

=

[∏
e

ce

]
c

+
∑
a

sa

[
ta
∏
e

ce

]
c

+
1

2

∑
a6=b

sasb

[
tatb

∏
e

ce

]
c

+
1

6

∑
a6=b6=c 6=a

sasbsc

[
tatbtc

∏
e

ce

]
c

+
1

24

∑
a,b,c,d;different

sasbscsd

[
tatbtctd

∏
e

ce

]
c

+ · · · (45)

That the subtracted terms indeed work out this way can
be checked for low orders in the small φα expansion. Up
to quartic order the right hand side gives

see equation (46) above

where now the sums over repeated indices are unrestricted.
This expression indeed coincides with equation (43).

For every integer 1 ≤ k ≤ n and ` ≥ 1 we introduce
symmetric order parameters

p
(`)
α1···αk = [c`1 · · · c

`
ntα1 · · · tαk ]c, (47)

with the restriction that the total number of replica indices
that occur more than once, does not exceed ` (for example,

p
(2)
ααβγ is needed, but p

(4)
αααββγ is not). Further

p(`) = [c`1 · · · c
`
n]c − 1. (48)

Introducing the spin variable

X(`) =
∑
a

(p(`)
α + h)sa +

1

2!

∑
a6=b

p
(`)
αβsasb

+
1

3!

∑
a6=b6=c 6=a

p
(`)
αβγsasbsc + · · · , (49)

we find that the `’th term of Φn involves an expression

tr
(`)
s exp{p(`) + X(`)}. Next we introduce the conjugate

order parameters q(`), q
(`)
α , q

(`)
αβ , · · · , through relations of

the type (16),

1 =

∫ ∞
−∞

dp
(`)
α1···αk

∫ i∞

−i∞

Nc

k!2πi
dq

(`)
α1···αk

× exp
1

k!
Nc q

(`)
α1···αk([tα1 · · · tαk

∏
e

ce]c − p
(`)
α1···αk).

(50)

Let us first consider the saddle point equations for p(`) and
q(`). It is readily seen that p(`) = O(n) and that q(`) =
1 +O(n). This implies that p(`) can be omitted and that
the q(`) terms can be summed. These manipulations lead
us to a replicated free energy of the form (36),

βFn = −Ψn(q) + (p, q)− Φn(p), (51)

with Φn given by equations (18, 49). Further,

(p, q) ≡
∞∑
`=1

γ`

∞∑
k=1

1

k!

∑
α1···αk

p
(`)
α1···αkq

(`)
α1···αk (52)

and

Ψn =
1

cN
log

∫
Dφ exp

(
−
T

2

∑
αrr′

φαr J
−1
rr′φ

α
r′

+N

[
log

(
1− c+ c trs exp

∑
α

φαsα

)]
c

)

× exp

(
cN

∞∑
`=1

γ`

∞∑
k=1

1

k!

∑
α1···αk

q
(`)
α1···αk [c`1 · · · c

`
ntα1 · · · tαk ]c

)
.

(53)

In this expression the logarithm sums the q(`) → 1 con-
tributions. The difficult part of the problem is still the
integration over the φ fields. One might even think that
nothing has been gained in the present representation.
However, the dangerous order parameters have been sub-
tracted explicitly. In the remainder of the paper we shall
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mainly consider situations where Ψn has a relatively sim-
ple form. Nevertheless, we shall be able to draw interesting
conclusions.

In general, the φ integrals cannot be performed exactly.
If the exponent is expanded up to second order in φ, one
recovers equation (17).

2.6 Small concentrations and the relation
with the Viana-Bray model

We now consider the limit of small c at fixed T . Here only
` = 1 contributes, so that all q’s and p’s with ` > 1 can
be omitted. The remaining ones have all replica indices
different from each other. Ψn can be approximated to order
q2. The integrals can be performed. To see how this goes,
consider equation (53). First, since c is small, we may omit
the term N [log · · · ]c in the exponent. When expanding in
powers of q we have bilinear terms of the type

c2qα1···αkqα′1···α′k′

∫
Dφ exp(−

T

2

∑
αrr′

φαr J
−1
rr′φ

α
r′)

×N [c1 · · · cntα1 · · · tαk ]cN [c1 · · · cntα′1 · · · tα′k′ ]c. (54)

Neglecting, for the moment, the difference between cumu-
lants and ordinary moments, the integral can be written as∑
r1,r2

∑
s,s̃

sα1 · · · sαk s̃α′1 · · · s̃α′k′

∫
Dφ exp(−

T

2

∑
αrr′

φαr J
−1
rr′φ

α
r′)

× exp
∑
γ

(φγr1sγ + φγr2 s̃γ) =
∑
r1,r2

∑
s,s̃

sα1 · · · sαk s̃α′1 · · · s̃α′k′

× exp(βJ(r1 − r2)
∑
γ

sγ s̃γ). (55)

For each fixed γ, the sum over sγ and s̃γ can have pre-
exponential factor 1, sγ , s̃γ , and sγ s̃γ . When performing
the sums, it is readily see that only the first or the last
type of terms survive; this explains also why terms lin-
ear in q vanish identically. This implies that only diago-
nal terms in the qα1···αk remain, with prefactors that are

spatial sums of coshn βJ(r1−r2) tanhk βJ(r1−r2). Inves-
tigating the subtraction terms that occur in the spatial
cumulants we observe that replacing the cumulants by or-
dinary moments leads at this point only to corrections
of order 1/N , that are negligible in the thermodynamic
limit. The same effect led to the exclusion of the k = 0
term in (17). This supports previous finding that the role
of the order parameters is only to eliminate the macro-
scopic parts of spatial averages; the remainder being the
well-behaved cumulants. For small n we find for the repli-
cated free energy

βFn =
c

2

{
− nτ0 + τ1

∑
α

M2
α + τ2

∑
α<β

q2
αβ

+ τ3
∑

α<β<γ

q2
αβγ + · · ·

}
− n log 2 + 1− trs expX,

(56)

with

τ0 =
∑
r

log coshβJ(r)

τk =
∑
r

tanhk βJ(r) (k ≥ 1) (57)

and

X =
∑
α

(cτ1Mα + h)sα + cτ2
∑
α<β

qαβsαsβ

+ cτ3
∑

α<β<γ

qαβγsαsβsγ + · · · (58)

When couplings are (mainly) ferromagnetic, a ferromag-
netic transition sets in at temperature such that cτ1 = 1.
If the J(r) are partly positive and negative, there are can-
celations in this sum. Then a spinglass phase may occur at
a higher temperature. The spinglass phase (qαβ > 0) sets
in at a temperature Tg where cτ2 = 1. If only couplings to
z neighbors are different from zero, a SG phase can only
occur beyond the percolation threshold cp = 1/z. c/cp > 1
expresses that, on the average, each spin should interact
with more than one other spin. For a fcc lattice in d = 3
this yields cp = 1/12 ≈ 8.3%, to be compared with the
simulated value cp ≈ 13.6% [17]. For the RKKY-coupling
in three dimensions, the condition cτ2 = 1 indeed yields
the “concentration scaling” TG ∼ c for small c.

Some years ago the SK model with diluted random
bonds was introduced by Viana and Bray [5]; it is com-
monly called the Viana-Bray model. These authors also
analyzed various aspects of the phase diagram. The same
model was actually found independently [18], by making
an analogy with the Flory model of coagulation [19,20].

In the diluted model one assumes that the couplings
Jrr′ in equation (1) vanish with probability 1− p/N , and
are drawn independently from a normalized distribution
r(J) with probability p/N . In the thermodynamic limit
N → ∞, the parameter p is kept fixed. There is a close
analogy with the Flory model of coagulation [19,20]. The
parameter p can be interpreted as a dimensionless time
variable, at which the coagulation has been interrupted.
For p < 1 only finite clusters exist, while for p > 1 an
infinite cluster has appeared. On this infinite cluster a
spontaneous phase transition can occur, to a (anti-) fer-
romagnetic or spinglass phase.

It would be interesting to consider p really as a slow
time variable, and to consider the combination of very slow
cluster growth and spin glass dynamics. In this dynamical
model the random couplings would be fixed, but as time
progresses more and more of them would become active.
This idea is inspired on a model, introduced by Coolen,
Penney, and Sherrington, where all couplings are active,
but their strength changes slowly in time [21].

The quenched free energy of the Viana-Bray model is
derived along the following lines. The averaged replicated
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partition sum equals

Zn =
∑
{sαr }

∏
〈rr′〉

{
1−

p

N
+
p

N

∫
r(J)dJ exp

(
βJ
∑
α

sαr s
α
r′

)}

≈
∑
{sαr }

exp

{
p

2N

∑
rr′

(
−1 +

∫
r(J)dJ coshn(βJ)

×
∏
α

(1 + sαr s
α
r′ tanhβJ)

)}
. (59)

Writing out the product over α and decoupling the terms
quadratic in products of spins at the same site, one defines

t0 =

∫
r(J)dJ log coshβJ ;

tk =

∫
r(J)dJ tanhk βJ (k = 1, 2, 3, . . . ). (60)

In the limit n → 0 the replicated free energy takes the
form

βFn =
p

2

{
− nt0 + t1

∑
α

M2
α + t2

∑
α<β

q2
αβ

+ t3
∑

α<β<γ

q2
αβγ + · · ·

}
− n log 2− log trs expX,

(61)

with X given by equation (58) after the replacement
cτk → ptk. For a discussion of the phase diagram of this
model, see e.g. references [5,22–24].

For short range couplings in the random site prob-
lem the two results are thus closely related. Indeed, since
again −1 + trs expX is equivalent to log trs expX, the
only real difference lies in the meaning of the parameters
cτk = (c/cp)(τk/z) = ptk. In the diluted random bond

model τk/z = tk is defined as the average of tanhk βJ
over the distribution of the independent couplings J . In
the random site model with sure couplings, this average
is taken over space.

3 Gaussian variational approach

Since disordered systems are so hard to solve, it is be-
coming more and more popular to investigate variational
approaches [25–28]. In the present problem one starts from
equations (7, 8), and chooses the variational Hamiltonian

Hvar =
1

2

∑
ijαβ

(φαi −mα){G−1}αβij (φβj −mβ). (62)

The variational propagator 〈φαi φ
β
j 〉var = Gαβij = Gαβ(ri −

rj) is translationally invariant and has Fourier transform

Ĝαβ(k). The variational free energy per spin becomes

βF =
1

Nc
(− lnZvar + 〈Hn −Hvar〉var)

=
∑
α

m2
α

2βĴ(k = 0)
+

1

2c

∑
α

∫
ddk

(2π)d
{− ln Ĝ(k)+

Ĝ(k)

βĴ(k)
}αα

+
∞∑
`=1

γ`(1− tr(`)
σ e

∑
α(h+mα)σα+ 1

2

∑
αβ σαGαβ(r=0)σβ ).

(63)

The variational equation δF/δGαβ(k) = 0 can be
expressed in terms of qαβ using (22). This yields

Gαβ(k) =

(
βĴ(k)

1− cβĴ(k)q

)
αβ

· (64)

Its k-integral can be identified with equation (23):

pαβ = Gαβ(r = 0) =

∫
ddk

(2π)d

(
βĴ(k)

1− cβĴ(k)q

)
αβ

· (65)

Due to this, the `-sum in equation (63) can be identified
with the expressions (18, 19). Therefore the variational
equations of the second order cumulant expansion [10] and
the Gaussian variational approximation coincide. It is then
a small exercise to check that the saddle point value of the
free energy also coincides. This does not mean that both
approaches are the same. The Gaussian variational ansatz
has looked in a larger space, with variational parameters
Gαβ(r), but found the same physics as the second order
cumulant expansion with its space-independent parame-
ters pαβ and qαβ . The reason hereto is simply that both
approximations are Gaussian. The equivalence of the two
approaches was realized by us in fall 1995.

One can go to the continuum limit. Hereto one rein-
serts the lattice constant a, and takes the combined limit
c→ 0, a→ 0, such that ρ = c/ad is fixed. The main effect
is an overall factor ad (since in the limit F/ad becomes
the finite free energy per unit volume) and that only the
` = 1 term survives in the sum (because c→ 0). This con-
tinuum result was discovered independently by Dean and
Lancaster [29], who started in the continuum immediately
(we should point out, however, that a proper definition of
their path integral would reintroduce a lattice, making
it coincide with our lattice formulation.) They introduce
a grand-canonical description of disorder, which is phys-
ically the same as the ordinary disorder average, but for
their purpose a bit more convenient.

We have criticism to this work. The claim of [29] to
present a new field theoretic approach is unjust. Their
field theory in replica space (paper I, Eq. (4), paper II
Eq. (2.5)) is just the continuum limit of the above equa-
tions (6, 7, 8), represented long ago as equations (2, 3)
of reference [10]. Though citing this paper, the authors of
[29] fully refrained from admitting that, despite the dif-
ferent approach, the resulting saddle point equations and
saddle point free energy are not new either [30], but coin-
cide in detail with the ones of the second order cumulant
expansion of [10], and also discussed above.
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4 A site-disordered spin glass model
with pair overlaps only

In realistic spin glasses the signs of the interactions os-
cillate due to the strong distance-dependence for pairs of
spins present. We have seen that this leads to global multi-
spin order parameters, a somewhat unfamiliar theoretical
framework. On the other hand, it is customary to consider
models where the signs are uncorrelated random variables.
We shall extend that approach to the site-diluted case, and
find that only local pair overlaps occur.

Consider the couplings

Jrr′ = J(r − r′)ξrξr′ (66)

with independent quenched random numbers ξr. Numer-
ically the simplest choice is ξr = ±1 with equal proba-
bilities. We shall take them, however, Gaussian with zero
average and unit variance. For J(r) ∼ −1/r3 this form re-
places the deterministic signs of the RKKY interaction by
random signs. We proceed along the lines of Section 2, and
introduce fields φαr . The disorder average over the random
spin configurations and the random ξ’s will now yield

exp

(∑
α

sαcr(φαr ξr + h)

)
=

1− c+ c exp

1

2

∑
αβ

φαr φ
β
r sαsβ + h

∑
α

sα

 . (67)

We can introduce the composite local field pαβ(r) = φαr φ
β
r

as new variable by inserting δ functions at each lattice
site. In their plane wave representations there appear only
Gaussian φ integrals. Integrating them out one is left
with a field theory for the space-dependent fields pαβ(r),
qαβ(r). Its Hamiltonian reads

βHn =
∑
r

βH(m(r), p(r), q(r)) (68)

with

βH(m, p, q) =
T

2cĴ(0)

∑
α

m2
α

+
1

2c

∑
α

{log(1− cβĴ(k)q)}rα;rα +
1

2
c
∑
αβ

qαβpαβ

− ln

1− c+ ctrs exp

1

2

∑
αβ

pαβsαsβ + h
∑
α

sα

 .

(69)

Note that the log-term is non-local. In the mean field ap-
proximation, the functions p and q are space-independent.
The resulting expression is then very close to the one in
the second order cumulant expansion of Section 2. Now
the spin sums are simpler, since the logarithm need not

be expanded. Consequently, the sign changes in the coef-
ficients w and y1, y2, y3, to be discussed in Section 7, do
not occur in the present model.

As in Section 2, equation (25), the effective coupling is

Ĵeff (k) =
Ĵ(k)

1− cβĴ(k)(1− qEA)
, (70)

which again exhibits clustering effects.

5 Vector spins

Experimentally, spinglasses usually consist of Heisenberg
spins with weak or strong anisotropy. It is therefore use-
ful to extend our formalism to m-component spins. We
consider the Hamiltonian

H(s) = −
1

2

∑
µνrr′

Jµνrr′S
µ
r S

ν
r′crcr′ −

∑
µr

Hµ
r S

µ
r cr (71)

where |S| = 1. The translationally invariant coupling
J may contain effects of anisotropy, such as dipolar
anisotropy.

5.1 Second order cumulant expansion

Proceeding as above we can carry out the calculations in
the second order cumulant expansion. We find

βFn =
β

2c

∑
αµν

Ĵµν(0)Mµ
αM

ν
β

+
1

2c

∫
k

∑
αµ

{log(1− cβĴ(k)q)}αµ;αµ

+
1

2

∑
αβµν

pµναβq
µν
αβ − Φn. (72)

The expression for Φn takes the form

Φn = n logΩm +
∞∑
`=1

γ`

{
−1 + tr

(`)
S expX(`)

}
. (73)

Here Ωm is the area of a unit sphere in m dimensions
(Ω1 = 2, Ω2 = 2π; Ω3 = 4π). DS = Ω−nm dS1 . . . dSn, is
the angular integration measure for one replicated spin

and tr
(`)
S =

∏`
j=1

∫
DS(j) is the integration over all repli-

cated spins. Finally,

X(`) =
∑
αµ

(mµ
α + hµ)

∑̀
j=1

S(j)µ
α

+
1

2

∑
αβµν

pµναβ

∑̀
jj′=1

S(j)µ
α S

(j′)ν
β . (74)
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Ψn =
1

cN
log

∫
Dφ exp

(
−
T

2

∑
αµr

φµα(r){J−1φα}
µ(r) +N

[
log

(
1− c+ c

∫
DS exp

∑
α

φµαS
µ
α

)]
c

)

× exp

cN ∞∑
`=1

γ`

∞∑
k=1

1

k!

∑
α1···αk

P1 · · ·Pk q
(`)
α1···αk(S1, · · · ,Sk)

[
C`1 · · ·C

`
nTα1(S1) · · ·Tαk(Sk)

]
c

 (83)

In the SK-type limit discussed above, one again obtains
and expression quadratic in the q’s:

βFn =
β

2c

∑
αµνr

Jµνr0 M
µ
αM

ν
α +

β2

4c

∑
r

∑
αβ

∑
µνρσ

Jσµ0r J
νρ
r0 q

µν
αβq

ρσ
βα

+
1

2

∑
αβµν

pµναβq
µν
αβ − Φn. (75)

For isotropic couplings in the presence of an external field,
Gabay and Toulouse [31] already showed the occurrence
of an irreversibility line where transverse components of
the spins freeze.

5.2 The resumed cumulant expansion

Here our aim is to derive the equivalent for vector spins of
the resumed cumulant expansion of Section 2.5. This will
yield, in particular, a prediction for the transition temper-
ature at low concentrations.

The first step in the derivation is the vector analog of
the cumulant generating function equation (41):[

exp
∑
aµ

φµαS
µ
a

]
= exp

(
[exp

∑
aµ

φµαS
µ
a ]c − 1

)
, (76)

where µ = 1, 2, . . . ,m and where a = (α, j) with α =
1, 2, . . . , n and j = 1, 2, . . . , `. The natural generalization
of equation (44) is to introduce

exp
∑
µ

φµαS
µ
a = Ca + CaTα(Sa)

= Pa exp
∑
µ

φµαS
µ
a +Qa exp

∑
µ

φµαS
µ
a ,

(77)

where

Ca =
1

Ωm

∫
dSa exp

∑
µ

φµαS
µ
a ≡ Pa exp

∑
µ

φµαS
µ
a , (78)

with Pa = Ω−1
m

∫
dSa being a projector,Qa = 1−Pa being

its complement, and

Tα(Sa) =
exp

∑
µ φ

µ
αS

µ
a

Cα
− 1. (79)

In analogy with Section 2.5 we define order parameter
functions

p
(`)
α1···αk(Sa1 , · · · ,Sak) =[

C`1 · · ·C
`
nTα1(Sa1) · · ·Tαk(Sak)

]
, (80)

where the total number of repeated replica indices should
not exceed `. Note that this quantity depends only on k
spin variables, generalizing a similar property of the com-
bination pα1···αksa1 · · · sak of Section 2.5. The expression
for Φn takes the form (73) with

X(`) =
∑
a

{p(`)
α (Sa) + h · Sa}+

1

2!

∑
a6=b

p
(`)
αβ(Sa,Sb)

+
1

3!

∑
a6=b6=c 6=a

p
(`)
αβγ(Sa,Sb,Sc) + · · · (81)

Going through similar steps as before we derive the repli-
cated free energy

βFn = −Ψn(q) + pq − Φn(p), (82)

where
see equation (83) above

and where

pq =
∞∑
`=1

γ`

∞∑
k=1

1

k!

∑
α1···αk

P1 · · ·Pk p
(`)
α1···αk

× (S1, . . . ,Sk)q
(`)
α1···αk(S1, · · · ,Sk). (84)

In the limit of strong anisotropy, where the vector spins
are Ising-like and point along the ±z axis, these equations
reduce to the results of Section 2.5. Indeed, it can be seen

that q
(`)
α1···αk(S1, . . . ,Sk)→ {q(`)

α1···αk}IsingS
z
1 . . . S

z
k in this

limit.

5.3 The spin glass transition at low concentrations

The spin glass transition occurs for small p
(`)
αβ and q

(`)
αβ .

We now restrict ourselves to the case of small c, where
only the ` = 1 terms contribute. The transition tempera-
ture is found by considering a replica symmetric solution
qαβ(S1,S2) = qSG(S1,S2). By expanding the mean field
equations of pαβ and qαβ it is seen that the condition for
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qSG(S1,S2) = c
∑
r

P3P4 qSG(S3,S4)Q1Q2Q3Q4 exp
(∑

µν{S
µ
1 βJ̃

µν
0r S

ν
3 + Sµ2 βJ̃

µν
0r S

ν
4 }
)

{
P5P6 exp

(∑
µν S

µ
5 βJ̃

µν
0r S

ν
6

)}2 (85)

the critical point has the form of an integral equation

see equation (85) above

where J̃µν0r = 1
2 (Jµν0r +Jνµr0 ). Note that this equation has the

form of an eigenvalue equation, Kernel× qSG = (1/c)qSG.
This prediction is useful for long range spin glasses with a
small concentration of spins, as typically occurs in experi-
ments on metallic spinglasses and also in the Monte-Carlo
experiment of reference [12].

The fact that an integral equation occurs is not unex-
pected, since this is already known to happen for a linear
chain. Because of this reason, the analysis of the SG phase
for very diluted vector spins is more cumbersome than for
Ising spins.

For isotropic couplings, Jµν(r) = δµνJ(r) the rele-
vant solution of equation (85) has the form qSG(S1,S2) =
S1 ·S2. Indeed, the Qi’s may be replaced by unity because
of symmetry and the remaining integrals over S3 and S4

are proportional to S1 and S2, respectively. This leads to
the condition

c
∑
r

{∫
dSSz exp(βJ(r)Sz)∫
dS exp(βJ(r)Sz)

}2

= c
∑
r

{
Im

2
(βJ(r))

Im−2
2

(βJ(r))

}2

= 1, (86)

where Iν is the modified Bessel function of index
ν. It is the generalization of the relation cτ2 ≡
c
∑
r tanh2 βJ(r) = 1 for Ising spins (m = 1), derived in

Section 2.6. For Heisenberg spins (m = 3) equation (86)
becomes

c
∑
r

{
cotanhβJ(r) −

1

βJ(r)

}2

= 1. (87)

As it involves the classical Langevin function for our
classical spins, one expects it to contain to the quantum
Langevin function for quantum spins. Equation (87) is
quite natural, as the same mean field form, but without
taking the square, is known to occur for the ferromagnetic
transition.

Equation (87) again leads to concentration scaling
TG ∼ c for RKKY couplings. We have tested it for
the situation considered by Matsubara and Iguchi [12].
These authors consider a fcc lattice with lattice constant
a0 and with c = 5% spins present. The RKKY cou-
pling J(r) = J0 cos(2kF r)(a0/r)

3 involves the parameter
kF = 4.91/a0; J(r) is set to zero for r ≥ 3a0. The simula-
tions yield a spin glass transition at Tg/J0 = 0.068±0.008.
We find from the above relation that Tg/J0 = 0.306. It
shows that c = 5% is not a small concentration, and that
higher order corrections in c are important.

6 Spin glass behavior at low temperatures

In order to see whether spin glass behavior in the form of
breaking of replica symmetry is likely to occur, we consider
the simplest generalization of the SK-model. It is given
by equations (17, 18, 19). The model represents the site-
diluted spin system in a Gaussian approximation.

Consider the low temperature behavior of the replica
symmetric solution Mα = M, qαα = qd, qα6=β = q. For

small T we observe the “groundstate dominance” s
(j)
α =

s
(1)
α for all j = 1, . . . , `. This implies that repeated spin

sums reduce to single spin sums. It leads to a free energy

βF =
T

2cĴ(0)
m2 +

1

2c

∫
ddk

(2π)d

{
ln(1− cβĴ(k)(qd − q))

−
cβĴ(k)q

1− cβĴ(k)(qd − q)

}
+

1

2
(pdqd − pq)

−
∑
`

γ`

∫
g(x)dx ln 2 cosh `(h+m+ x

√
p), (88)

where g(x) = exp(−x2/2)/
√

2π is the Gaussian weight.
It can be checked that qd = 1 − c. The other mean field
equations are

M ≡
Tm

cĴ(0)
=

∫
g(x)dx

∑
`

γ`` tanh `(h+m+ x
√
p),

q =

∫
g(x)dx

∑
`

γ``
2 tanh2 `(h+m+ x

√
p),

p =

∫
ddk

(2π)d
cβ2Ĵ2(k)

(1− cβĴ(k)(qd − q))2
,

pd = p+

∫
ddk

(2π)d
βĴ(k)

1− cβĴ(k)(qd − q)
· (89)

For small T it holds that p ∼ T−2 is large. One therefore
finds

q = qd −

√
2

π

∑
`

γ`
`2

`
√
p

= qd −

√
2

πp
· (90)

Note that this result also holds for c > 1/2, where the
`-sum is formally divergent.

According to the analysis by de Almeida and Thou-
less [32], the instability of the replica-symmetric solution
is caused by a negative eigenvalue of the fluctuation ma-
trix. This mode has been termed “replicon” [33]. We have
proposed the name “ergodon” for it, since this name re-
lates to the underlying physical mechanism of ergodicity
breaking, rather than to one of the mathematical ways to
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βFn =
n

2c(2π)d

∫
ddk ln(1− cβĴ(k)qd)−

1

2

∞∑
j=2

1

j
cj−1βjJj

∑
α

(qj)αα +
1

2

∑
αβ

qαβpαβ +
n

2
qdpd

+ n log 2 +
∞∑
l=1

γl

1− tr(l)
s

∞∑
j=0

1

j!

1

2

∑
αβ

pαβσασβ

j

exp

[
1

2
pd
∑
α

σ2
α

] (95)

study it [34]. The “mass” of the “ergodon” or “replicon”
can be derived along the lines of AT. One expands the
free energy up to second order in δpαβ, δqαβ , imposing
the condition

∑
α δpαβ =

∑
α δqαβ = 0. This finally leads

to a 2 × 2 matrix, which has one large eigenvalue (not of
interest to us) and an eigenvalue that may become zero
and negative. The latter eigenvalue has in case of ground
state dominance the approximate form

Λ(T ) ≈ 1−
p

q

∑
`

γ`

∫
g(x)dx

`4

cosh4 `x
√
p
· (91)

Using q → qd = 1− c, this leads to

Λ(T ) ≈ 1− (1− 2c)

√
8p

9π
· (92)

As p ∼ T−2, it follows that Λ ∼ −(1 − 2c)/T , showing
the expected AT instability for 0 < c < 1/2. However, for
c > 1/2 the replica symmetric mode is seen to stabilize at
low T .

To see whether the replica symmetric state has correct
physics for c > 1/2, we consider the zero-point entropy.
We take m = h = 0. To order T 0 the expression (88) now
becomes

βF =
1

2c

∫
ddk

(2π)d

{
ln(1 − cβĴ(k)(qd − q))

−
cβĴ(k)q

1− cβĴ(k)(qd − q)

}
−

√
2p

π
· (93)

It follows that the entropy has the form

S =
1

2c

∫
ddk

(2π)d

{
− ln(1− cβĴ(k)(qd − q))

−
cβĴ(k)(qd − q)

1− cβĴ(k)(qd − q)

}
< 0. (94)

For T → 0 this goes to a finite but negative value. The
same behavior occurs in the replica symmetric solution
of the SK model, which follows as a limiting case of the
present model.

Thus replica symmetry must be broken for all c at
low T . There is a glassy phase, possibly coexisting with
(anti-) ferromagnetism. This is somewhat surprising when
the replica symmetric solution is stable, but similar be-
havior was found in a neural network [35]. The present
calculation suggests that infinite order replica symmetry
breaking occurs at low T . Due to the “ground state domi-
nance”, it could be analyzed along the lines familiar from
the SK model.

7 Ginzburg-Landau expansion
near the spinglass transition

We use a Ginzburg-Landau expansion of the free energy
to investigate which kinds of glassy phases can occur in
site-disordered systems. The expansion is derived using re-
sults of Section 2.1. Since it includes only the lowest order
overlap 〈σασβ〉, it has the same form as the Ginzburg-
Landau expansion for the SK-model [2]. The difference
lies in the prefactors, which now depend on the concen-
tration of spins and on temperature. We show that these
prefactors can change sign, giving rise to phase-transitions
between different glassy phase. The phase diagram of the
model is studied as a function of the prefactors.

In order to obtain the Ginzburg-Landau potential, we
expand the free energy equation (17) in the off-diagonal
elements of pαβ and qαβ , which vanish at the transition. In
the following, we redefine qαα = pαα = 0 and keep track
of the diagonal elements pd and qd explicitly. We obtain

see equation (95) above

where Jj is the jth moment of the effective coupling (25)

Jj =

∫
ddk

(2π)d
Ĵeff (k)j . (96)

As is discussed in Section 2.1, this coupling includes the
effects of clustering of spins which become important at
higher spin densities. The saddle point equations for pαβ
and qαβ are readily obtained from equation (95).

pαβ =
∞∑
j=2

βjcj−1Jj(q
j−1)αβ , (97)

qαβ =
∑
l

γltr
(l)
s σασβ expX(l) = 〈σασβ〉. (98)

Using these equations, the pαβ are eliminated from the
free energy. We subtract the lowest order contribution,
which gives the paramagnetic background, and rescale
cβ2J2qαβ → qαβ . Equation (95) now reads

βFn =
1

2

∞∑
j=2

(
1−

1

j

)
T jJj

Jj2

∑
α

(qj)αα + Φ̃n, (99)
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where

Φ̃n =
∞∑
l=1

γl

1− tr(l)
s

∞∑
j=0

1

j!

1

2

∑
αβ

(
qαβ

+
∑
i

T i
J2+i

J i+1
2

(
qi+1

)
αβ

)
σασβ

)j
exp

[
1

2
pd
∑
α

σ2
α

] .

(100)

We expand the free energy to fourth order. Φ̃n gives the
following second-order contribution

1

8

∑
l

γltr
(l)
s

∑
α1β1α2β2

qα1β1qα2β2σα1σβ1σα2σβ2

× exp

[
1

2
pd
∑
α

σ2
α

]
. (101)

The trace only has a non-zero value if the replica-indices
are pair-wise equal. Because qαα = 0, α1 = β1 and α2 = β2

give no contribution. Equation (101) thus gives

1

4
µ22

∑
α

(q2)αα, (102)

where we have introduced the l-spin moments µk1···km

µk1···km =
∑
l

γl tr
(l)
s σ

k1
1 · · ·σ

km
m exp

[
1

2
pd
∑
α

σ2
α

]

=
∑
l

γlm
(l)
k1
· · ·m(l)

km

(
m

(l)
0

)n−m
n→0
=
∑
l

γl
m

(l)
k1

m
(l)
0

· · ·
m

(l)
km

m
(l)
0

, (103)

with m
(l)
k = trσσ

k exp[pdσ
2/2].

The third-order contribution from j = 3 in equa-
tion (100) is derived in the same way. The replica-indices
can be paired up in eight ways, each yielding a term∑
α(q3)αα. From j = 2 comes a term of the same form.
Both j = 2 and j = 3 give the fourth order term∑
αα(q4)αα, j = 4 gives:∑

αβ

q4
αβ 8 ways,

∑
αβγ

q2
αβq

2
αγ

∣∣
β 6=γ

48 ways,

∑
αβγδ

qαβqβγqγδqδα|α6=γ;β 6=δ 48 ways,

∑
αβγδ

q2
αβq

2
γδ

∣∣
α6=γ,δ;β 6=γ,δ

12 ways. (104)

Since (
∑
αβ q

2
αβ)2 is of order n2, the last term in equa-

tion (104) will not contribute in the limit n → 0. We

implement the constraints on the indices by Kronecker
delta’s and then sum them out. For the third term in
equation (104), this for instance gives∑

αβγδ

qαβqβγqγδqδα|α6=γ;β 6=δ

=
∑
αβγδ

qαβqβγqγδqδα(1− δαγ)(1− δβδ)

=
∑
αβγδ

qαβqβγqγδqδα − 2
∑
αβγ

q2
αβq

2
αγ +

∑
αβ

q4
αβ .

(105)

Combining these results with the contributions from the
first term in equation (99), we finally obtain the following
free energy, which has the same form as for the SK model.

βFn = −
τ

2

∑
α

(q2)αα −
w

6

∑
α

(q3)αα −
y1

8

∑
αβ

q4
αβ

−
y2

8

∑
αβγ

q2
αβq

2
αγ −

y3

8

∑
α

(q4)αα. (106)

The prefactors in this expansion are functions of concen-
tration and temperature. The prefactor of the quadratic
term, τ = (µ22 − T 2/cJ2)/2, vanishes at the spin glass
temperature Tg(c) ≡

√
cJ2µ22. The other prefactors in

the free energy are given by

w = µ222 − 2
T 3J3

cJ3
2

+ 3µ22
TJ3

J2
2

, (107)

y1 =
3

2
µ2222 +

1

6
µ44 − µ422, (108)

y2 = µ422 − 3µ2222, (109)

y3 = µ2222 − 3
T 4J4

cJ4
2

+ 2µ22
T 2(J2

3 + 2J2J4)

J4
2

+ 4µ222
TJ3

J2
2

. (110)

The paramagnetic behavior is coded in the parameters
pd and qd, that satisfy the coupled mean field equations
pd = βJ1 and qd = µ2. All information on clustering is
contained in τ , w, and the y’s, so in the µ’s and the Jj . In
the limit c→ 0 the µ’s go to unity and for T ∼

√
c the J3

and J4 terms vanish, so that one recovers the Ginzburg-
Landau free energy of the SK-model. The important fac-
tors then are w = 1, y1 = 2/3, while the values of y2

(= −2) and y3 (= 1) are irrelevant. When following the
transition line T = Tg(c) in the c − T phase diagram as
function of c, it is seen that the higher µ’s are rapidly
oscillating functions. For instance, if J3 and J4 are much
smaller than J2, then y1 changes sign at c = 2.7% and at
c = 4.3%, while w becomes negative at 6.7%.

Based on these observations we are led to assume that
the relevant physics near the phase transition(s) is still
contained in the GL free energy equation (106). However,
there is no reason to assume that w and y1 will always be
positive. (A sign change of y1 occurs also in a Potts glass
[36]). Given the type of the lattice and the values of the
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Fig. 1. c−T phase diagram for a fictitious system with a line
w(c, T ) = 0. PM = paramagnet; SG = spin glass.

spin-spin couplings, the c−T phase diagram may exhibit
a limited number of special points (c∗, T∗) where either
w or y1 vanishes, and new phase boundaries originate.
In Figure 1, a fictitious phase diagram is depicted for a
system where w changes sign at some (c∗, T∗).

In the limit n→ 0, the free energy can be expressed in
terms of the Parisi order parameter function q(x) in the
usual way [6].

βF =

∫ 1

0

dx
{τ

2
q2(x)−

w

3
q(x)T (x) +

y1

8
q4(x)

−
y2 + y3

8
q2(x)

∫ 1

0

dyq2(y) +
y3

2
T 2(x)

}
, (111)

where

T (x) =
1

2
xq2(x) + q(x)

∫ 1

x

dyq(y) +
1

2

∫ x

0

dyq2(y).

(112)

The phase diagram of this model is determined by the
parameters w and y1. The sign of the cubic prefactor de-
termines whether the model exhibits a second or a first or-
der transition. For positive y1, the low temperature phase
will be replica symmetry broken, for negative y1 replica
symmetric. In the region where y1 is of order τ2, a sixth
order replica symmetry breaking term becomes relevant.
We will discuss this case in Section 7.2. The parameters
y2 and y3 are only important in the region where w � 1,
which we will discuss first.

7.1 Behavior near first order type phase transitions

Suppose we take w negative and y1 positive. As we lower
temperature, the system undergoes a first order transition
to a state which breaks replica symmetry. At positive w,
on the other hand, we get a second order transition and
the low temperature state will undoubtedly be different
from the one at negative w (although it will also break
replica symmetry, since we keep y1 positive). We want to
study the transition between these two low-temperature
states. We therefore take y1 > 0 and allow w to change
sign. For w ∼

√
τ � 1, q is also proportional to

√
τ , so

equation (111) then includes all terms of order τ2 and
should describe the behavior near this transition.

At positive w, we find the usual transition from the
paramagnet (PM) to a Parisi-type spin glass phase (SG)
with infinite replica symmetry breaking. At w < 0, how-
ever, the order parameter in the low-temperature phase
only has one-step replica symmetry breaking (1RSB). So-
lutions of this form have previously been found by Gross,
Kanter and Sompolinsky [36] for the Potts glass and by
Crisanti, Horner and Sommers (CHS) [37] for a spherical
spin glass model with p-spin interaction. We find a con-
tinuous transition between the SG and the 1RSB phase
(Fig. 3).

The prefactors y2 and y3, which are only important if
w is small, must obey the following conditions: y3 < −y1

and y2 > max[0,−2y1−y3]. The first is related to keeping
the plateau q1 positive, the second to doing this for the
breakpoint x1 (q1 and x1 are defined below).

7.1.1 The spin glass (SG I) solution

First, we need to derive Parisi’s infinite-RSB solution in
the presence of the y2 and y3-term. We use the following
ansatz for the order parameter function q(x):

q(x) =

 qnc(x); x0 ≤ x ≤ x1

q1 ≡ qnc(x1); x1 ≤ x ≤ 1
· (113)

Because q(x) is continuous, it is completely determined by
the saddle-point equation δF/δq(x) = 0,

τq(x) − wT (x) +
y1

2
q3(x)−

y2 + y3

2
q(x)

∫ 1

0

dyq2(y)

+ y3

[
T (x)R(x) +

∫ x

0

dyT (y)q(y) + q(x)

∫ 1

x

dyT (y)

]
=0,

(114)

where

R(x) = xq(x) +

∫ 1

x

dyq(y). (115)

Both T (x) andR(x) are constant on the plateau at x ≥ x1.
The stability of the SG solution is determined by the

sign of the “ergodon”-function Λ(x), which is an eigen-
value of the fluctuation-matrix δ2F [q]/δq(x)δq(y).

Λ(x) = τ − wR(x) +
3y1

2
q2(x)−

y2 + y3

2

∫ 1

0

dyq2(y)

+ y3

[
R2(x) + xT (x) +

∫ 1

x

dyT (y)

]
. (116)

Differentiating the saddle-point equation (114) with re-
spect to x, we obtain q′(x)Λ(x) = 0. This implies that
the SG solution is marginally stable on the interval 0 ≤
x ≤ x1. Moreover, it is also marginally stable for x > x1,
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Fig. 2. The order-parameter function q(x) for various phases.
The SG II solution has been found for the Potts glass by Gross
et al., but does not occur here.

because q(x) is continuous at the breakpoint. This is of
course a well-known feature of this state.

The fourth derivative of the saddle-point equation with
respect to x yields a second order differential equation for
qnc(x). Its second derivative can be used to fix the height
of the plateau q1. We obtain,

qnc(x) =
w
√
y1 + y3x2

1x

3(y1 + y3x1)
√
y1 + y3x2

· (117)

Finally, the breakpoint x1 is given by the implicit equation
Λ(x1) = 0.

σ =
x1

3(y1 + y3x1)

−
(3y1+3y3−2y2)x2

1+ y2

y3
(y1+y3x

2
1)
(
x1−αatanh

(
x1

α

))
18(y1 + y3x1)2

,

(118)

where σ = τ/w2 and α =
√
−y1/y3. Near the transition,

this yields x1 ' 3y1σ.
For σ � 1, w > 0, equation (117) reproduces Parisi’s

solution of the SK model with x1 � 1 (Fig. 2a). When
x1 approaches α, q(x) squeezes into a stepfunction, with
the discontinuity located at x = x1 (Fig. 2f). This is
the transition from infinite to one-step replica symmetry
breaking. It occurs in the region w < 0, at σ = σc =
1/6y3 + y2/18y2

3(1− α) (Fig. 3).

Fig. 3. τ−w phase diagram for a system with y1 > 0, y3 < −y1

and y2 > max[0,−2y1 − y3]; with w increasing from right to
left it may appear in Figure 1 around the point (c∗, T∗).

7.1.2 One-step replica symmetry breaking solutions

The order parameter in the 1RSB state has the form of a
step function

q(x) =

0; 0 ≤ x ≤ x1

q1; x1 ≤ x ≤ 1
· (119)

Two conditions are needed in order to fix both the plateau
q1 and the breakpoint x1. Next to the saddle-point equa-
tion ∂F/∂q1 = 0, we may impose either stationarity with
respect to the breakpoint, ∂F/∂x1 = 0, or marginal sta-
bility of the ergodon on one of the plateaus, Λ0/1 = 0. We
will consider both procedures. The first gives the proper
static solution (or the solution for an infinitely slow cool-
ing rate), while the second solution ought to occur in
dynamics.

The saddle-point equation ∂F/∂q1 = 0 reads

τ − w

(
1−

1

2
x1

)
q1 +

1

2
(y1 − y2(1− x1)

+ 3y3(1− x1) + y3x
2
1)q2

1 = 0. (120)

The static solution must satisfy the additional equation

− τ + w

(
1−

2

3
x1

)
q1 −

1

4
y1q

2
1 +

1

2
y2(1− x1)q2

1

− y3

(
3

2
− x1 +

3

4
x2

1

)
q2
1 = 0. (121)

The breakpoint of the marginally stable solution is
fixed by

Λ1 = 0⇔ −τ + wq1 −
3

2
(y1 + y3)q2

1 +
1

2
y2(1− x1)q2

1 = 0.

(122)

In principle, the condition Λ0 = 0 could also yield a
dynamical solution, but this 1RSB state turns out to be
unstable.

We find the following static solution

qstat1 =
wx1

3
2y1 + 3y3x1

(
1− 1

2x1

) · (123)
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−
∑
α

(q5)αα
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1

10
µ22222 +

1

2
µ22T

3 J5J2 + J3J4

J5
2

+
1

2
µ222T

2 J4J2 + J2
3

J4
2

+
1

2
µ2222T

J3

J2
2

−
2

5

T 5J5

cJ5
2

)
−
∑
αβ

q3
αβ(q2)αβ

(
3

4
µ22222−

1

2
µ4222 +

1

12
µ442+

1

2
T
J3

J2
2

y1

)
−
∑
αβ

q2
αβ(q3)αα

(
−

3

4
µ22222 +

1

4
µ4222

)
−
∑
αβγ

q2
αβ(q3)γγ

1

24
µ22222

(128)

This solution sets in from x1 = 1, at a negative value of
σ, σstat1 = 1/9(y1 +y3). The transition is first order in the
sense that the order-parameter changes discontinuously
and that the transition occurs before the AT instability
of the PM phase. There is no latent heat, however. In
fact, there is a problem, because the continuation of the
PM phase has a lower free energy than the new 1RSB
solution. The system nonetheless needs to go to the 1RSB
state, because the PM becomes unstable at σ = 0. This
problem was also encountered by CHS.

The ergodon mass of the static 1RSB is the same on
both plateaus

Λstat0 = Λstat1 = −
1

4
(y1 + y3x

2
1)(qstat1 )2. (124)

It goes unstable at the transition to the SG phase, σ = σc,
where x1 becomes equal to α.

The dynamic solution is given by

qmarg1 =
wx1

2y1 + y3x1(3− x1)
· (125)

It also sets in a x1 = 1, but at a higher temperature than
the static 1RSB: σmarg1 = 1/8(y1 +y3). Close to σmarg1 , its
free energy is lower than that of the PM (∆F even has a
finite slope, but there is no latent heat [38,39]). However,
it becomes higher than FPM before the PM goes unstable
at σ = 0, so we have the same problem as with the static
solution.

The dynamic solution has Λ1 = 0, while the other
eigenvalue is given by

Λmarg0 = −
1

2
(y1 + y3x

2
1)(qmarg1 )2. (126)

It vanishes at the transition to the SG phase.
The subject of dynamical transitions has made large

progress since the start of this work, for a review see [40].
It is now understood that the marginality criterion sig-
nals dynamics in the highest, marginal states. This is the
regime reached when first taking the thermodynamic limit
and then letting time become large. In realistic systems
one expects to go to lower states in the course of time, in
a way that can be fixed, to some extent, by the cooling
procedure. That happens in mean field spin glasses pro-
vided one considers dynamics at time scales exponential in
the system size [41]. In other words, the marginality only
points at the onset of a more interesting behavior. Dy-
namics in marginal states itself has a very limited mean-
ing; it is a mean field artefact. The final result of these
investigations has been the development of a picture for

the thermodynamics of the non-equilibrium glassy state.
Apart from the real temperature there occurs an effec-
tive temperature Te = T/x1, at which the system’s slow
modes are at quasi-equilibrium [41,42]. This approach ex-
plains the old paradoxes related to the Ehrenfest relations
and the Prigogine-Defay ratio [39], that were the basis for
the general belief that thermodynamics does not work for
the glassy state.

7.2 The transition from the Edwards-Anderson
to the spin glass phase

Another region of interest is where the prefactor of the
replica symmetry breaking term, y1, changes sign. For
y1 ∼ −1, w ∼ 1, the model is in the Edwards Anderson
(EA) phase, which has a replica symmetric order param-
eter (Fig. 2e). At positive y1, it is in the SG phase. At the
transition between these two phases, y1 � 1 and higher
order replica symmetry breaking terms become relevant.
We therefore consider the following free energy

βFn = −
τ

2

∑
α

(q2)αα −
w

6

∑
α

(q3)αα −
y1

8

∑
αβ

q4
αβ

−
y5

8

∑
αβ

q3
αβ(q2)αβ −

y6

6

∑
αβ

q6
αβ . (127)

The y2 and y3 terms are omitted, since they are not impor-
tant for w ∼ 1. We have included the most dangerous fifth
and sixth order term. The full list of fifth order terms is

see equation (128) above.

The last of those is of order n2 and does not contribute
for n→ 0. The first and the third term are also neglected,
since they have a structure similar to the cubic term, but
are of higher order in τ . It turns out that the y5-term (the
second of Eq. (128)) can be absorbed into a redefinition of
y1 by using the saddle point equation (q2)αβ ' −2τqαβ/w.
We therefore replace y1 by ỹ1 = y1−2τy5/w and omit the
fifth order term. The prefactor of the most dangerous sixth
order term is given by

y6 = −
15

4
µ222222 +

15

4
µ42222 −

1

4
µ6222 −

15

16
µ4422

+
1

8
µ642 −

1

240
µ66. (129)

We may expect new behavior when ỹ1 and y6 become
of the same order of magnitude. Writing ỹ1 = 2y4τ

2/w2,
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Fig. 4. y1−τ phase diagram for w > 0, y6 > 0. The order
parameter function q(x) in the SG phase is drawn in Figure 2a
for the case q0 = 0. In the EA-phase q(x) is constant (no RSB).

Fig. 5. y1−τ phase diagram for w > 0, y6 < 0. In the SG III
phase q(x) is as in Figure 2c. Dynamically this phase splits up
in a 1RSB phase and a SG IV phase, see Figures 2b,d.

we study the phase diagram as a function of y4 for τ � 1
and fixed. We find the following results:

For y6 > 0, the model has a SG phase with nonzero
lower plateau q0. It interpolates between the EA phase,
where q0 = q1, and the SG phase, where q0 = 0 (Fig. 4).

For negative y6, there are two saddle points at the tran-
sition between the EA and the SG phase. The metastable
saddle point consists of a 1RSB solution which sets in from
the EA phase, followed by a transition to a new phase
which we call SG IV (Fig. 2d). At larger y4 there is a
second transition from SG IV to SG.

The order parameter of the stable saddle point is
shown in Figure 2c. This is also a new solution, which
we call SG III. It has a lower free energy than the 1RSB
and the SG IV solution. The SG III sets in from the EA
phase with x1 = q0 = 0, and evolves into the SG at higher
y4, where q0 becomes equal to q1.

The phase diagram for this region of parameter space
is shown in Figure 5.

The solutions in this region are obtained in much the
same way as the SG and the 1RSB. We therefore only
show that there is no direct transition from the EA to the
SG phase and then simply state the results for the phases
which occur in between.

As n→ 0, the free energy equation (127) takes the fol-
lowing form in terms of the order parameter function q(x)

βF =

∫ 1

0

dx

{
τ

2
q2(x)−

w

3
q(x)T (x)+

y4τ
2

4w2
q4(x)−

y6

6
q6(x)

}
.

(130)

Taking a replica symmetric ansatz, we now find for the
order parameter in the EA phase

qEA =
τ

w
+
y4 − y6

w5
τ4 +O(τ5). (131)

The SG solution is again determined by the saddle point
equation δF/δq(x) = 0. From the second derivative of this
equation, the non-constant part of q(x) is obtained

x(q) =
1

w

(
6y4q

τ2

w2
− 20y6q

3

)
. (132)

The upper plateau and the breakpoint of the SG order
parameter are given by

q1 =
τ

w
+

3y4 − 5y6

w5
τ4 +O(τ5),

x1 = x(q1) =
6y4 − 20y6

w4
τ3 +O(τ4). (133)

From these equations, it is seen that there is no smooth
transition from the EA to the SG phase for nonzero y6.
The details of the various solutions which occur in the
region |y4| ∼ |y6| are listed below. For all solution of the
SG-type, the non-constant part of the order-parameter is
given by equation (132).

SG with q0 6= 0

q0 =
τ

w

√
y4

2y6
+O(τ2),

q1 = q1SG; x1 = x1SG. (134)

SG III

q0 = −
τ

4w
+

τ

4w

√
1 +

8(y4 − y6)

3y6
+O(τ2) (135)

q1 =
1

w
τ +

y4

w4
(6q0τ

3 − 3wq2
0τ

2)

−
y6

w2
(20q3

0τ − 15wq4
0) +O(τ5). (136)

1RSB

q1 =
τ

w
+

5y4 − 6y6

2w5
τ4 +O(τ5),

x1 =
3y4 − 4y6

w4
τ3. (137)
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Fig. 6. Some unsuccessful attempts.

SG IV

q0 = −
τ

2w
+

τ

2w

√
1 +

y4 − 2y6

y6
+O(τ2)

q1 =
τ

w
+ 2

y4 − y6

w5
(τ4 + wq0τ

3)−
y4 + 2y6

w3
q2
0τ

2

−
y6

w2
(2q3

0τ − 3wq4
0) +O(τ5)

x1 = 2
y4 − y6

w4
(τ3 + 2wq0τ

2)−
y6

w2
(6q2

0τ + 8wq3
0) +O(τ4).

(138)

7.3 Unsuccessful attempts

Since the procedure for finding saddle points of the free
energy is to guess an ansatz and then to check if it works,
we cannot guarantee that we have found everything there
is. In particular, we have not found satisfactory solutions
for the region w < 0 and y1 < 0. Also, there may be extra
solutions in the regions where we have already found sta-
ble saddle points, as the results for y1 � 1 show. There are
however some states which we definitely know not to be
there, since we have unsuccessfully tried them. They are
shown in Figure 6. Most notably, we have not found a sta-
ble 2RSB state (Fig. 6a) for any values of the parameters.
One-step and infinite replica symmetry breaking seem to
be the only types of RSB that occur. Also 1RSB states
with a non-zero lower plateau (in zero magnetic field) have
been tried without success. States b, c and d were thought
to evolve from the 1RSB at small w, but none of them do.
State b (SG II) does occur in the Potts glass [36].

8 Summary

We have presented the details of a new description for
phase transitions in site-disordered magnets, a field that

was started by us in 1992. As described in a letter of 1993
[10], the approach starts from considering an infinity of
macroscopic order parameters. This approach is different
from, but probably equivalent to, the space-dependent or-
der parameter field showing up usually, such as in the
model of Section 4.

For the case of a random-site Ising spin glass, the cen-
tral result is given by equations (51, 37, 18, 49). Simplifica-
tions are found in the combined limit of small concentra-
tions and large coordination number z. Here the random
site problem generalizes the mean field model with ran-
dom bonds, the spin glass phase of the Hopfield model
and of the SK model. Only the pair overlap order param-
eter qαβ plays a role. In general, an infinity of multistate

overlaps q
(`)
α1···αk , and conjugated overlaps p

(`)
α1···αk occurs.

A resummation has been done, which is useful for low tem-
peratures. This approach simplifies a bit for small concen-
trations, where a close relation is found to the spin glass
model with diluted random bonds of Viana and Bray. In
this regime the random site model exhibits a percolation
threshold for short range systems and the “concentration
scaling” Tg ∼ c for RKKY systems.

We have generalized the approach to the case of vec-
tor spins. This has led to a criterion for the transition
temperature at low concentrations.

In dilute YGd single crystals, closely related to dilute
AuFe and CuMn crystals, a thermodynamic transition to a
state with “complete” spin density wave formation occurs
[43]. The formation of incomplete spin density waves in
metallic spin glasses have been observed by neutron scat-
tering [14]. Therefore incomplete spin density waves have
been presumed to be the cause of spinglass behavior in
metals [44]. In our theory we indeed see that the effective

coupling Jeff (k) = Ĵ(k)/(1− cβĴ(k)(qd − qEA)) enhances

the quantitative contribution of maxima in Ĵ(k). Nev-
ertheless, thermodynamics involves all wavevectors (see,
e.g. (23)) without decisive role for the special wavevectors
connected to spin density waves. As expected already by
many, and confirmed by the experiments of Weissman [9],
incomplete spin density waves do not play a distinctive
role in the spin glass phase. Although our present theory
should be capable to explain why dilute YGd has spin
density waves, while AuFe and CuMn have a spin glass
phase, it is not clear to us how this should be shown.
Let us recall that in the second order cumulant expansion
(Gaussian approximation) the spin glass transition always
precedes spin density waves or ferromagnetism [10].

Our present theoretical analysis also applies to the
ill understood cluster glass or mictomagnetic phase. In
metallic systems this is the phase observed between
the low concentration spinglass and high concentration
(anti-) ferromagnet, see [1] for a review. We have con-
sidered the Ginzburg-Landau expansion for our site-
disordered field theory, within the second order cumu-
lant expansion (Gaussian approximation in replica space).
These expressions show that the prefactors of the cubic
and quartic terms in the Ginzburg-Landau expansion may
go through zero at certain points. The physically interest-
ing cases are when either the prefactor of the cubic term
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vanishes, or the one of the quartic term that is responsi-
ble for replica symmetry breaking. We show that in the
first case there is a transition to a phase with one step
of replica symmetry breaking, while in the latter there
may occur new spin glass phases between the standard
spin glass and the replica symmetric Edwards-Anderson
phase.

It would be interesting to analyze the clusterglass ex-
perimentally in more detail, and in particular to look
for new phases. Theoretically it is worth to analyze loop
effects for the new phases. They may shed insight on
the question whether fluctuations (de-) stabilize the new
phases, though their effect may also be a mere shift of
the transition point. This problem is partly related to the
notorious problem of the renormalization of the AT-line
[45]. Finally the question of reentrant phases should also
fall within the scope of the theory presented here.

Throughout the years the authors have benefited from dis-
cussions with Jean-Philippe Bouchaud, Ton Coolen, Cyrano
de Dominicis, Jean-Marc Luck, John Mydosh, Giorgio Parisi,
Henri Orland, David Sherrington, and many others.
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